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The phase configuration of internal waves around a 
body moving in a density stratified fluid 

By T. N. STEVENSON 
Department of  the Mechanics of Fluids, University o f  Manchester 

(Received 23 May 1973) 

A body is started impulsively from rest and moves in a curved path in a stably 
stratified fluid. The phase configuration of the internal waves which are generated 
is studied using small amplitude wave theory. The theory is compared with 
experiment for a few special cases which include a horizontal cylinder moving 
in a circular path in a vertical plane, oscillating through a large amplitude in 
a horizontal plane, and moving with constant velocity past stationary plates. 
Theory and experiment show reasonable agreement except where the waves 
produced by the wake dominate the flow. 

1. Introduction 
The steady internal waves which develop around a body moving with a con- 

stant velocity in a fluid with a constant Brunt-Vaisala frequency were discussed 
byLighthill(1967), Mowbray & Rarity (19676) andRarity (1967). Ifanoscillating 
body moves at a constant mean velocity then an oscillatory wave system is 
superimposed on the steady wave system (Stevenson 1969; Stevenson & Thomas 
1969). The theoretical and experimental work is now extended to the waves 
around a body moving in a curved path. Small amplitude wave theory is used 
to obtain an equation for the phase configuration of the waves in terms of a body 
velocity which can vary with time. This equation reduces to that of Stevenson & 
Thomas (1969) when the time and the radius of curvature approach infinity and 
when the body velocity is constant. The radiation condition is included in the 
analysis and there is no need to study the wavenumber surfaces explicitly. The 
waves do not maintain the geometrical similarity which existed in the previous 
work. 

The phase configurations of the waves around a horizontal cylinder are derived 
for a few specific cases: (u) an oscillating cylinder which moves in a circular path 
with a constant mean angular velocity, ( b )  a cylinder which oscillates through 
a large amplitude in a horizontal plane and (c) a cylinder which moves with 
constant velocity past a stationary plate. The theory is compared with experi- 
ments in stratified brine and the wave system is viewed using a schlieren system. 
It is found that Cauchy-Poisson waves due to the impulsive start are present in 
many of the wave systems. Consequently the theory for these waves is also 
outlined and compared with experiment. 
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2. Analysis 
The dispersion relation for incompressible inviscid internal gravity waves 

generated by an oscillating point disturbance is (Lighthill 1967) 

w2( Z2 + m2 + n2) = wg(Z2 + m2). (1) 

wo is the Brunt-Vaisiila frequency, which will be assumed constant, and w is 
the frequency associated with the energy propagating from the point disturbance. 
The wavenumber k has components ( I ,  m, n )  in the (2, y, x )  directions with II: 

and y in the horizontal plane and z in the upward vertical direction. We are 
interested in short-wave solutions with Z2 + m2 + n2 wg/2g and have omitted 
a term in wg/2g from the dispersion relation. (g  is the accleration due to gravity.) 
Further qualification is required when considering the Cauchy-Poisson waves but 
this will be discussed later. 

At sufficiently large distances from the forcing region the principle of stationary 
phase applied to the integral equation for the properties within the waves shows 
that energy propagates away from the disturbance with the group velocity 
c = V,w. For internal waves, from (1)) 

c = (wgn/wk4) (Zn,mn, - (Z2+m2)), ( 2 )  

where k = I k] . The phase configuration of the waves around an oscillating body 
moving with a constant mean velocity was evaluated by Stevenson & Thomas 
(1969) using this group velocity. The waves agreed quite well over the whole flow 
field except, perhaps, very close to the body. Therefore to simplify the present 
problem the group-velocity concept will be applied to the whole flow field. 

At time t = to a body starts to move with a velocity Q ( t )  such that its distance 
from an origin 0 fixed in the undisturbed background fluid is R(t) as in figure 1. 
If the body is at the point A at time t = t ,  then energy will propagate from A with 
a velocity c and a t  a later time t will be at  a position P which is at  a distance 

r = R, + ( t  - t,) c (3) 

from the origin. The subscript 1 is used to denote conditions at time t,. 
If wf is the frequency associated with either the path of the body, vortex 

shedding from the body or with forced oscillations of the body, then the relation 
between w and wf is given by the Doppler equation 

= Wf+Q1.k. (4) 

Any number of forced frequencies may be included merely by superimposing the 
wave system due to each individual value of w f .  

The phase CD at P is given by 

CD = ( k . C - w ) ( t - t , ) - w f t , + ~ o ,  ( 5 )  

where q50 is a constant. From (2) it  may be shown that k.c  = 0, so that ( 5 )  may 
be rearranged to read 

t - t ,  = (q50 - CD - wf t ) / (w  - W f ) .  (6) 
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FIGURE 1. The path of the body. 

The radiation condition implies that t - t ,  > 0 and therefore 

t - t ,  = IN/(qllcosyl + W f ) I ,  (7) 

where cos2y = ( w / w ~ ) ~  and y is the angle between the vertical and the group- 
velocity vector as in figure 1. N varies by 2n between one wave crest and the 
next. 

Equations (2) and (7) are substituted into (3) to give 

r = R,+ 1M ?(Zn,mn, -(Z2+rn2)), lNIr 
where M = lcos yI 
equation together with the dispersion relation and (4). 

case the equation for the phase configuration is 

wf/wo. The phase configuration can be evaluated using this 

The present experiments are restricted to two-dimensional waves and in this 

r = (x, x )  = R, + - {u, cos y - W, sin y> (sin y tan y, sin y) ,  (9) la Wll &f 
I ,  

with Q, = (U,, W,). 
Before this equation is compared with experiment there is one other wave 

system which must be considered because it is present in most of the experi- 
ments. This is the Cauchy-Poisson wave system which is generated by an 
impulsive disturbance. In  the above equations the wavenumbers have been 
restricted to those which satisfy both the dispersion relation and the Doppler 
equation. However, in the Cauchy-Poisson waves the only restriction is that 
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the wavenumbers generated must satisfy the dispersion relation. If the dis- 
turbance occurs at  time t = to the phase at  a later time is given by 

For internal waves k . c = 0 and so, making use of the dispersion relation in the 
form w = oocosy, we have CD = & uo(t -to) cosy. Therefore the waves are 
St Andrew’s crosses inclined at an angle y to the vertical, where 

CD = (k . c -o )  (t-to). 

y = cos-l{N/wo(t - to ) } .  (10) 
N varies by 277 between one wave crest and the next. Internal waves have a phase 
velocity directed towards the horizontal level of the disturbance. Thus the 
impulsive waves appear near the vertical and move towards the horizontal so 
that as time increases more and more waves are present. 

Mowbray & Rarity ( 1 9 6 7 ~ )  studied the Cauchy-Poisson problem and included 
the wg/2g term in the dispersion relation. Waves similar in shape to the Kelvin 
ship wave were obtained. The wavelength of the vertical transverse waves, which 
cross the horizontal plane of the disturbance, decreases as time increases. For the 
present experiments, 60 s after the impulse, the wavelength of these waves would 
have decreased to 22 m. This is a length scale very much greater than any in the 
experiments and the waves due to the wg/2g term were not observed. Consequently 
the experiments will be compared with (lo), which is the same as that obtained 
when wg/2g --f 0 in Mowbray & Rarity’s theory. 

3. Comparison of theory and experiment 
3.1. The apparatus 

A glass-sided tank 1.8 m long, 0.9 m high and 0.55 m from front to back was filled 
with stratified brine which had an almost constant Brunt-Vaisala frequency. 
A schlieren system with 0.46 m diameter mirrors was used to observe the waves 
which developed when a horizontal circular cylinder was moved through the 
fluid. The cylinder diameters were between 1.5 and 10mm with ratios of length 
to diameter of approximately 40. 

3.2. Impubive-start waves 

The waves produced when a circular cylinder 6 mm in diameter was impulsively 
moved through a distance of less than 5mm are shown in figure 2 (plate 1). 
The schlieren photographs were taken through the sides of the tank and the 
black vertical line is the cylinder support. It is seen that the number of waves 
increases with time and that the waves are described very well by (10). 

From ( 2 )  it  can be shown that a locus of constant wavenumber consists of 
two circles which have the x axis as a tangent and whose centres are on the 2 
axis at k ( t  - to) w0/2k. In figure 2 (c), no waves can be observed within regions 
roughly bounded by a constant-wavenumber locus. It appears either that the 
schlieren system cannot resolve wavenumbers higher than 0.4 mm-1, or that the 
body did not generate these wavenumbers, or that the waves have been dis- 
sipated by viscous effects. Most of the energy seems to be in the range of wave- 
numbers between 0.4 and 0.04 mm-l. 
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FIGURE 3. A horizontal cylinder moves ( a )  with a constant mean velocity a t  an angle a 
to the horizontal, ( b )  in a circular path and ( c )  with large amplitude oscillations in a 
horizontal plane. 

3.3. Cylinder moving with constant velocity 

If an oscillating body moves with a constant mean velocity at  an angle a to the 
horizontal (figure 3a)  then 

Q,(x, x )  = (& cos a, - & sin a) and R,(x, z )  = (Qt, cos a, - Qt, sin a).  

Therefore the phase configuration, equation (9), takes the form 

and t, = ( t  - \iV/M//q,), which is subject to the conditions 0 < t ,  < t .  If the body 
stops a t  time t,, where t, < t ,  then t ,  < t,. When t -+ co and after a suitable change 
of the co-ordinate system, equation ( I  1) reduces to that given by Stevenson & 
Thomas (1969). 

Figure 4 (a) (plate 2 )  shows the lee waves behind a cylinder moving horizontally 
from an impulsive start. The steady wave system obtained from (1 1) with wf = 0 
is a series of circular arcs centred on the body and contained within a circle 
passing through the body and through the starting position A .  The impulsive- 
start waves, equation (lo), are straight lines which pass through A and are 
tangential to the leading edges of the steady waves. Figure 4(b )  (plate 2) shows 
how the wave system looks some time after the cylinder has stopped. In  
figure 4 (c )  (plate 2 )  it is shown how the impulsive-start waves are tangential to 
the leading edge of the steady waves generated by a body moving at  20” t o  the 
horizontal. 

Figure 5 (plate 3)  shows examples of the experimental and theoretical wave 
pattern which is obtained when a cylinder moves a t  constant velocity past an 
inclined plate. The reflected waves satisfy the following condition given by 
Mowbray & Rarity (1967a): 

lc,sin((-O) = k,sin((+O), (12) 

where the suffixes I and R refer to the incident and reflected waves respectively. 
The plate is inclined a t  an angle ( to the horizontal and the incident and reflected 
waves make an angle 0 with the horizontal. 
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(a) 

FIGURE 8 (a). For legend see facing page. 

3.4. Cylinder moving in circular path 

If a body moves in a circular path with a constant angular velocity w, (figure 3 b )  
then Q1 = (w, R cos a, - w, R sin a )  and R, = (R sin a, R cos a). Lines of constant 
phase, from (9), are given by 

(;,:) = (sina,cosa)+ cos(y-a) (sinytany,siny), (13) 

where 
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FIGURE 8. (a) A body moves in a circular path, equation (13), with to, = 80, o,/wo = 0.92 
and w j  = 0. ( b )  A body oscillates in a horizontal plane, equation (16), with tw, = 50, 
we/wo = 1.0 and w, = 0. The scale marks are of length 2R. The circles and dots have 
a phase difference of 71. 

a is subject to the conditions 
0 < too, c a! < tue. 

If the body stops at  time t,, where t ,  < t ,  then a < t,o,. 
Schlieren photographs of the wave system around a horizontal cylinder moving 

in a circular path with constant angular velocity are reproduced in figure 6 
(plate 4). The shape of the waves, computed by taking equal steps in y, is shown 
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as points in the figures or, when the points are close together, as a continuous 
line. The density of points does not represent energy density. For a true picture 
of the energy density it would be necessary to solve the equations satifying the 
boundary conditions on the body. 

A body moving vertically with constant velocity produces a herring-bone 
wave pattern and one travelling horizontally produces circular-arc waves. When 
the body moves in a circular path it is seen from figure 6 how these wave patterns 
gradually change from one to the other. 

Theoretical and experimental waves around an oscillating body moving 
in a circular path are shown in figure 7 (plate 5). Wave patterns when the 
oscillatory frequency wf is above and below the Brunt-Vaisalii frequency are 
shown. 

When a body moves in a circular path with w f =  0, the number of waves 
produced in one revolution depends only on the angular velocity. A change in 
the radius of the circle and a corresponding change in the body velocity merely 
produces a geometrical scaling of the whole wave system. After several revolu- 
tions the wave system is very complicated. However, it is interesting to see how 
the pseudo-steady waves (in which wf = 0) develop into a cross when the angular 
velocity we is close to  the natural frequency wo. Equation (13), with wc/wo = 0-92 
and wf = 0, produces the picture shown in figure 8 (a) .  Some photographs of the 
cross-waves produced when a horizontal cylinder moves in a clockwise circular 
path with wf = 0 are presented in figures 9 (a)-(d) (plate 6 ) .  The horizontal cylinder 
is producing quite a large wake and this spreads out to the right at the top of 
the path and to the left a t  the bottom. The wake and the waves are coupled 
and the wave system is much wider than that predicted by (13). The arms of 
the cross-wave have twice the width of those described by the viscous similarity 
analysis of Thomas & Stevenson (1972). I n  other words, there are twice as many 
visible displacement peaks in the waves shown in figure 9 as there are in the waves 
produced when a body oscillates with an amplitude which is less than the body 
diameter, the type of oscillation used by Mowbray & Rarity and Thomas 65 
Stevenson. 

3.5. A cylinder oscillating with a large amplitude 

Finally we look a t  the waves produced when a body oscillates in a horizontal 
plane with an amplitude which is large compared with the diameter of the body. 
If the body is oscillating with frequency w, in a horizontal plane (figure 3c) then 
we can write R, = (Rsina, 0) and Q1 = (w,R cosa, 0) ,  so that the phase con- 
figuration, equation (9), is 

(16) cos a sin ?(sin y, cos 7). N ~ C l C O S Y l  (z,:) = ( s i n a , ~ ) +  - -- l l  M w ,  M 

a is again subject to the conditions (14) and (15). 
When the frequency of oscillation w, is close to the natural frequency, (16) 

produces a cross similar to that for the circular path. When w, = wo and wf = 0 
equation (16) produces the vertical wave shown in figure 8 ( b ) .  Note that the 
inviscid, small amplitude, point-disturbance theory (Mowbray & Rarity 1967 a )  
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does not produce a wave when the frequency of oscillation is equal to wo, although 
the viscous similarity theory of Gordon & Stevenson (1972) does produce such 
a wave. 

Photographs of a cylinder oscillating through a large amplitude are shown in 
figures 9(e) and ( f )  (plate 6). When w, is less than wo two halves of a cross-wave 
are produced but each half is centred on the point where the body velocity is 
zero. The waves do not agree with (16) because the largest disturbance arises 
when the wake overtakes and engulfs the cylinder as the cylinder comes to rest 
at  the end of each half oscillation. 

In  figure 9 the schlieren photographs show vortex shedding from the strut 
supporting the model. However, this does not affect the wave system significantly. 

4. Conclusion 
The phase configuration of the internal waves in a, density stratified fluid has 

been described by two equations. One equation describes the energy, which, on 
leaving the disturbance region, satisfies a Doppler equation. The other describes 
the Cauchy-Poisson waves which are a result of an impulsive disturbance. 
The phase configuration calculated from these two equations has been compared 
with the wave system generated by a horizontal cylinder which moved along 
several specific paths. The theory and experiment agreed quite well providing 
the wake was not a strong source of waves. If the body moves through its own 
wake or if the wake moves over the body then extra sources must be included in 
the analysis. 

The author appreciates the helpfuldiscussions with Professor N. H. Johannesen. 
The work was supported by the Procurement Executive, the Ministry of Defence. 
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FIG- 2. The cylinder is started and stopped at time t = 0. The schlieren photographs 
show the phase configuration of the impulsive waves at (u) t = 108, (6 )  t = 25s  and 
(c) t = 45 8. The angle y which the wave crests make with the vertical is compared with 
(10) in (d). Experimental points: + , t = 10 8 ;  W, t = 25 8 ;  0, t = 45 8. 

STEVENSON (Facing p. 708) 
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FIGURE 4. (a) The body moves horizontally with constant velocity from the point A. 
-, steady lee waves, equation (11); - - -  , impulsive-start waves, equation (10). 
Q = 6-6 mm s-l, to = 0, t = 22 s. (b) The body moves horizontally with constant velocity 
starting from A and stopping a t  B. Wave pattern 22 s after the stop: -, steady waves, 
equation (1 1) ; - - -, impulsive-start waves, equation (10) ; - - -, impulsive-stop waves, 
equation (10). Q = 6.6 mm s-l, to = 0, t, = 20 s, t = 42 s. (c) The body moves from point 
A with constant velocity at an angle of 10" to the horizontal. -, steady wave system; 
--- , impulsive-start system. Q = 4.9 mm s-l. The scale lengths are 50 mm. 
STEVENSON 
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FIGURE 5. Reflected waves. The wave pattern p r o d u d  when a horizonbal cylinder moves 
at constant velocity past a stationary flat plate. (a)  a = 0, with a vertical plate. ( b ) ,  
(c) a = 20°, with inclined plates. 

STEVENSON 
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FIGURE 6. A horizontal cylinder moves slowly in a circular path from an impulsive start 
with tow, = 3.14 and w,/wo = 0.098. The scale lengths are 50mm. (a) tw, = 6-20. -, 
impulsive-start waves, equation (10); . . .-. a ,  pseudo-steady waves (w, = O),  equation 
(13). ( b )  tw, = 7.22. (c) tw, = 11-30. 

STEVE\XON 



Journal of Fluid Mechanics, Vol. 60, part 4 Pla,te 5 

I .  . .  

(c) 
FIQURE 7. A horizontal cylinder in a circular path, equation (13). (a), ( b )  . . .-. . .. 
oscillatory wave system; - - - -,first-harmonic waves; - - -, impulsive waves. too, = 4.71, 
o,/wo = 0.024, w,/wo = 0.59. (a) to, = 5.67. (b)  to, = 7-26. (c) Oscillations above the 
natural frequency. . . . -. - . , oscillatory system ; - - -, pseudo-steady wave system (of = 0). 
too, = 0, to, = 1-91, oc/o0 = 0.024, w,/w0 = 1.05. 

STEVENSON 






